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Abstract

The electricity price forecasting (EPF) is a challenging task not only because
of the uncommon characteristics of electricity but also because of the existence of
many potential predictors with changing predictive abilities over time. Particularly,
how to account for all available factors and extract as much information as possible
is the key to the production of accurate forecasts. To address this long-standing
issue in a way that balances complexity and forecasting accuracy while facilitat-
ing the traceability of the predictor selection procedure, the method of Bootstrap
Aggregation (bagging), which is a variant shrinkage estimation approach for the
estimation of large scale models, is proposed in this paper. To forecast day-ahead
electricity prices in a multivariate context for six major power markets we construct
a large scale pure-price model (in addition to some stochastic models that are com-

monly applied in the literature) and apply the bagging approach in comparison with
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the popular Least Absolute Shrinkage and Selection Operator (LASSO) estimation
method. Our forecasting study reveals that with its superior forecasting perfor-
mance and its computationally simple algorithm, the bagging emerges as a strong
competitor to the commonly applied LASSO approach for the short-term EPF.
Further analysis for the variable selection for the bagging and LASSO approaches
suggests that the differentiation in the forecast performances of two approaches
might be due to, inter alia, their structural differences in the explanatory variables
selection process. Moreover, to account for the intraday hourly dependencies of
day-ahead electricity prices, all our models are augmented with latent factors, and
a substantial improvement is observed only in the forecasts from models covering
a relatively limited number of predictors, while almost no improvement is obtained
in the forecasts from the large scale model estimated through LASSO and bagging
techniques.

JEL Classification: C22; C38; C51; C53; Q47.

Keywords: Bagging; Shrinkage methods; Electricity price forecasting; Multivari-

ate modeling; Forecast encompassing; Factor models.

1 Introduction

The dynamics of electricity price formation have become a complex phenomenon due
to the power market liberalization processing since the early 1990s. With the ongoing
liberalization process, the traditionally government-controlled power sectors have turned
into open and competitive environments where commodities are bought, sold, and traded
under specific market rules. Compared to other commodities, electricity is a very special
commodity due to its rare characteristics. It has a non-storable nature, which requires
a constant balance between production and consumption, and eliminates any possibil-
ity of inventories to be used to create any price arbitrages (Shahidehpour et al. (2002);
Weron (2014)). Secondly, although price elasticity of electricity demand has displayed
a slight increase over recent years probably due to amplified energy-saving awareness,
electricity demand is price inelastic in the short-run since most consumers are indifferent

to or unaware of the current electricity price (Weron and Misiorek (2008); Zhu et al.



(2018)). Moreover, the price of electricity is extremely dependent on the weather condi-
tions and consumption time, e.g. hour of the day, day of the week, and time of the year
(Weron (2014); Lago et al. (2018)). High intensity of business and everyday activities
boost electricity demand and prices. Finally, electricity prices are subject to sudden and
unexpected short-lived spikes due to factors including transmission problems, real-time
supply-demand balancing, and the increasing penetration of renewable energy resources,
which stimulates the dependency of electricity prices on weather conditions (G. P. and S.
(2013); Lago et al. (2018)). All these uncommon characteristics have complicated electric-
ity price formation and make accurate and reliable short-term electricity price forecasts
quite valuable for number of institutions spanning from power plant operators to market
operators and from transmission system planners to power portfolio managers.

Over the past decade, many different sophisticated approaches have been proposed
to forecast day-ahead electricity prices (for a comprehensive review, see Aggarwal et al.
(2009); Weron (2014)). Among them, time series models and regression analysis ap-
pear to be the most acclaimed modeling techniques in the electricity price forecasting
(EPF) literature. Commonly applied time series models include not only the basic au-
toregressive (AR) and autoregressive moving average (ARMA) specifications but also
AR and ARMA models with exogenous variables (ARX, ARMAX) (Weron and Misiorek
(2008); Kristiansen (2012)) or with nonlinear dynamics (Crespo Cuaresma et al. (2004);
Misiorek et al. (2006)), regime-switching models (Mount et al. (2006); Kanamura and
Ohashi (2008)), vector autoregressions (VAR) (Ziel et al. (2015)), generalized autoregres-
sive conditional heteroscedasticity (GARCH) based models (Garcia et al. (2005); Knittel
and Roberts (2005)) and so on. However, the most challenging issue in the electricity
price forecasting is the existence of many potential predictors, which complicates the
identification of the most influential and relevant factors. This issue becomes more cru-
cial especially in out-of-sample forecasting exercises where relevant predictors might turn
into predictors with less or even no forecasting power. To tackle this issue, one of the
most commonly used strategies is to utilize shrinkage estimation methods. These meth-
ods facilitate not only to account for all available factors and extract as much information
as possible rather than being confined to a specific subset of predictors selected through

traditional variable selection methods but also to track the predictor selection procedure.



In this respect, the Least Absolute Shrinkage and Selection Operator (LASSO) due to
Tibshirani (1996) , became a quite popular estimation tool in the EPF literature for han-
dling models with many potential factors (e.g. Ziel et al. (2015); Ludwig et al. (2015);
Uniejewski et al. (2016, 2018)). Furthermore, more recently, in an extensive empirical
electricity price forecasting exercise, Ziel and Weron (2018) and Uniejewski et al. (2019)
have suggested that the LASSO appears to be the best model compared to various other
benchmark models. However, despite its highly improved forecast accuracy, the LASSO
is subject to a number of limitations including the need for a dedicated numerical op-
timization procedure and its considerable dependency on the regularization parameter.
Due to that dependency, a grid of regularization parameters might be required to spec-
ify the best performing model, which, in turn, can exacerbate the already complicated
optimization procedure (Uniejewski et al. (2019)).

An alternative strategy, which is the main focus of this paper, is to use the method of
Bootstrap Aggregation (bagging). Bagging is a statistical method originally developed
by Breiman (1996a,b) and its theoretical advancements are well established by studies
including Hall et al. (1995), Biithlmann and Yu (2002), Andrews (2004), Friedman and
Hall (2007), and Lee et al. (2010). Fundamentally, as described by (Inoue and Kilian,
2008, p. 551): “Bagging involves generating a large number of bootstrap resamples of
the original forecasting problem, applying a pre-test model selection rule to each of the
resamples, and averaging the forecasts from the models selected by the pre-test on each
bootstrap sample”. Averaging across resamples eliminates the instability of the model
selection decision rules, which are inherently sensitive to small alterations in the data, and
allow one to harvest as much information as possible from available predictors. Averaging
the parameter estimates across bootstrap samples in each time period also address the
parameter instability problem. Although a number of recent studies suggest that bagging
is a promising tool for improving forecast accuracy of economic and financial variables
such as inflation, employment growth and stock returns (e.g., Inoue and Kilian (2008);
Rapach and Strauss (2010); Jordan et al. (2017)), to the best of our knowledge, bagging

has not been applied in the EPF literature so far'. This finding is interesting because

IThere are also some complex algorithms in the scope of machine learning applications of the electric-
ity price forecasting which include bagging as a tool but share a perspective that is completely different
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bagging, which is asymptotically a shrinkage forecast (Huang and Lee (2010); Jin et al.
(2014); Stock and Watson (2012)), might manifest itself as a computationally simple
one to overcome the issue of having many potential predictors with changing predictive
abilities over time as well as balancing the complexity and forecasting accuracy while
facilitating the traceability of the predictor selection procedure.

In that sense, the contribution of our paper is twofold. Our first and principal contri-
bution is to provide a thorough analysis of the use of the bagging technique for forecasting
day-ahead electricity prices in a multivariate setting. To provide an extensive empirical
study, we consider six datasets from key electricity markets and perform bagging in
comparison with a number of stochastic models that are commonly applied in the EPF
literature. These models include the meany,,, model that is based on the mean values
of the past prices, the naive model of Nogales et al. (2002) that is based on the similar-
day principle and simple Autoregressive (AR) models. Besides these three benchmark
models, we employ EXPERT model, which is originally proposed by Misiorek et al.
(2006) and manifest itself being abstract and parsimonious while including AR, periodic
and nonlinear effects together. Finally, we construct a large scale pure-price model and
apply the bagging approach in comparison with the popular LASSO estimation method.
We explore the performance of the bagging technique in comparison to all constructed
models based on different forecast performance evaluation criteria and Diebold-Mariano
tests, which facilitate us to investigate whether bagging can significantly improve the
forecast accuracy and any structural differences in terms of mostly selected predictors
with bagging and LASSO?.

Our second contribution is addressing an important consideration that is often over-
looked in forecasting day-ahead electricity prices in a multivariate framework. Unlike
the univariate fashion, the multivariate modeling approach, where each hour of the day
is modeled separately, is motivated by the fact that in many day-ahead electricity mar-

kets, continuous trading is not allowed; instead, agents are supposed to submit their

than that we present here both in terms of methodology and the data. Due to the breadth of the EPF
literature, a detailed discussion of those studies is not provided in this paper but the interested reader
is referred to the most recent study of Agrawal et al. (2019).

2The replication material and the forecasting toolbox in Gauss Aptech Programming language can
be downloaded from WillBeAvailableSoon.


WillBeAvailableSoon

bids and offers for delivery of electricity for all hours of the next day before a specific
market closing time. Hence, the prices of all the hours of the next day are determined
simultaneously at once. Although the multivariate framework is more coherent with the
data generation of electricity prices, its one important limitation is that it lacks intra-day
hourly dependencies of day-ahead electricity prices. In the EPF literature, there is only a
small number of studies accounting for these dependencies. In that sense, Vehvilainen and
Pyykkonen (2005), Hardle and Triick (2010), Nowotarski et al. (2014), Raviv et al. (2015),
Maciejowska and Weron (2015, 2016) and Ziel (2016) address that dependence through
factor models, which have been broadly utilized in various economic and financial appli-
cations but have not been exploited in the EPF literature, except above-mentioned few
studies. Our modeling and implementation strategy for factor models, however, differs
from existing studies in various dimensions. In our application, we extend our models to
incorporate the intra-day hourly dependencies of day-ahead electricity prices by augment-
ing all models using factors estimated through a Principal Component Analysis (PCA)
with data dependent selection procedures. Then, we explore whether factor-augmentation
can provide a further improvement in the forecast accuracy.

The remainder of the paper is organized as follows. In Section 2, we describe our
data sets and the data transformation method we employed to stabilize the variance of
day-ahead hourly electricity prices. Then, in Section 3, after providing a comprehensive
discussion of the forecasting models including the bagging technique and factor augmen-
tation, we review forecast performance evaluation criteria and the Diebold-Mariano test
designed to explore significant differences in the forecasting performances. In Section 4,
we present the empirical results, discuss forecast performances of the models, and provide
the occurrence tables which indicate the number of times a specific predictor is selected

in each model. Section 5 concludes the paper.

2 Data

Our dataset, summarized in Table 1, consists of hourly data for six electricity day-

ahead price series from five major power markets, including Nordic Power Exchange

Nord Pool for system price (NP.SYS) and for United Kingdom (NP.N2EX), Common-



wealth Edison (ComEd) zone in the Pennsylvania-New Jersey-Maryland (PJM) market
(PJM.COMED), OTE and OMIE which manage the Czech Republic (OTE.CZ) and
Iberian market (OMIE.SP), respectively. Our last dataset comes from the price track
of the Global Energy Forecasting Competition 2014 (GEFCom2014), which provides lo-
cational marginal prices at an hourly resolution. While the source of the data is not
publicized by the organizers of the competition, the reader is referred to Hong et al.
(2016) for details of this series. The GEFCom2014 dataset covers a 3-year period from
January 1, 2011 to December 17, 2013, the remaining datasets cover a 6-year and 9-month

period from January 1, 2013 to September 19, 2019.

Table 1: Summary of the day-ahead electricity price series

Electricity Market Acronym #of Data Points 008 Source

Nord Pool (system price) NP.SYS 58872/2453 35280/1470  nordpoolgroup.com
Nord Pool,UK NP.N2EX 58872/2453 35280/1470  nordpoolgroup.com
PJM,USA PJIM.COMED 58872/2453 35280/1470 dataminer2.pjm.com
OTE price for the Czech Republic OTE.CZ 58872/2453 35280/1470 ote-cr.cz
OMIE price for Spain OMIE.SP 58872/2453 35280,/1470 m.omie.es
GEFCom2014 competition data GEFCom2014 25968,/1082 8400/350 Hong et al. (2016)

Note: The table reports the summary of the day-ahead electricity price series considered in
the paper. The total number of data points (# of Data Points) and the length of the out-
of-sample forecast period (0os) are given in univariate/multivariate settings, respectively
The GEFCom?2014 dataset covers a 3-year period from Jan 1, 2011 to Dec 17, 2013, the
remaining datasets — a 6-year and 9-month period from Jan 1, 2013 to Sep 19, 2019.
NP.N2EX price is in terms of GBP/MWh, PJM.COMED and GEFCom201/ is in terms
of USD/MWh and remaining series are in terms of EUR/MWh.

In our analysis, approximately the first three (two) years are set as the estimation
or training period for five major markets (GEFCom2014) (i.e. from 1 January 2013
to 10 September 2015 for five major markets and from 1 January 2011 to 1 January
2013 for GEFCom2014). Once all considered models are estimated using data from the
training period, we produce forecasts for all 24 h of the next day. Then, keeping the
estimation window length constant, which is 983-day and 732-day for five major markets
and GEFCom, respectively, the window is rolled forward by one day and we reestimate
all models and predict each hour of the second day. This process is repeated until the
forecasts for the last day of the out-of-sample period (19 September 2019 for five major
markets and 17 December 2013 for GEFCom2014) are computed. Before conducting our

empirical analysis, our price series (excluding GEFCom2014) are preprocessed to account
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for missing values and changes to/from daylight-saving-time. In that sense, being in
line with many existing studies, including Weron (2006), Nowotarski et al. (2014), and
Uniejewski et al. (2016), the missing values (including the clock change in March) are
substituted by the simple average of two neighbor hours. The ‘doubled” hours (including
the clock change in October) are also averaged and substituted for the corresponding

hour.

2.1 Data transformation

Similar to many electricity price series, our hourly prices exhibit price spikes and high
volatility. This critical issue requires careful consideration since it might render the ob-
served model estimates and statistical inferences derived from those estimates prone to
severe problems and hence reduce the forecast accuracy. Compared to other forecasting
methodologies, this problem could be much more substantial for our bagging technique
which relies on pre-test model selection rules that require reliable statistical inferences. To
reduce spike severity and stabilize the variance of the electricity price series, many trans-
formation methods have been proposed (for a comprehensive discussion of data transfor-
mation techniques utilized in EPF literature, see Uniejewski et al. (2018)). Among them,
the logarithmic transform is the most popular approach due to its simplicity. However,
the log-transform is not feasible when dealing with our datasets including negative or
zero values, which is an increasingly observed phenomenon in electricity price series due
to the increased penetration of renewable energy in electricity generation with negligible
electricity generation costs.

In our analysis, similar to Ziel and Weron (2018), we prefer to employ the area (or
inverse) hyperbolic sine (asinh) transformation which has a logarithmic tail behavior like
the log-transform but can handle both positive and negative values. In that respect,
given that Y, represents the original day-ahead price at day d and hour £, the asinh

transformation is given as:

Yan = asmh(ffd’h) = log()}d,h + \/f/d%h +1) (1)

where y4 5, denotes the asinh-transformed price ffd,h is the normalized price obtained from



the median normalization by using the formula:

Vyp= 20— (2)

where a and b are called shift and scale parameter, respectively. The shift parameter, a,

is the median of the estimation period and the scale parameter, b, is the median absolute

1
20.75 "

deviation (MAD) around the sample median in the estimation period adjusted by
This adjustment is required to ensure asymptotically normal consistency of the standard
deviation. Once asinh-transformed prices (y4) are computed, we estimate all our models
using the transformed data, and derive the forecasts. After computation of forecasts 4,
inverse transformation (hyperbolic sine) is applied to derive the day-ahead electricity
price forecasts as:

}A/dﬁ =b- Siﬂh(@dﬁ) +a (3)

3 Econometric methodology

In this section, we describe all models we employed to forecast day-ahead electricity prices.
In that sense, we start with the overview of three benchmark models (the meanygy,
naive, and AR models), move on to EXPERT models and the large scale pure-price
model with LASSO approach, continue with the introduction of the bagging procedure
and after that with the factor augmentation that aims to exploit the intra-day dependen-
cies of prices. Finally, we conclude this section with the discussion of evaluation metrics
that are needed to evaluate and compare forecast performances.

Before starting to discuss the forecast models, it is worth mentioning that we im-
plement a multivariate modeling framework where each hour of the day h = 1,...,24 is
treated as a separate series and the prices for all hours of the next day are forecasted
at once using rolling window. The multivariate approach, which is generally favored in
studies for short-term predictions (e.g.Nowotarski et al. (2014); Weron (2014)), is inspired
by the facts that in many day-ahead electricity markets there is one-auction each day for
the next 24 hours and each hour has a distinct price profile due to differences in hourly

demand, costs and operational constraints. However, it ignores potential interdependen-



cies between the hours of the day, which suggests that the price at hour j depends not
only on the price of previous days at hour j but could also depend on a different hour .
In that sense, while one might be in favor of the use of the univariate approach, which
has the advantage of incorporating that dependence by setting a single model for the
entire data and performing a recursive scheme to produce forecasts, it has the drawback
that it could produce inaccurate forecasts depending on the magnitude of the effect of
accumulation of errors, arising during the recursive scheme (Ziel and Weron (2018)). For
that reason, our modeling is implemented in a multivariate framework and further factor
augmentations are introduced to evaluate whether or not accounting for interdependen-
cies between the hours of the day provides any substantial improvement in the forecast

accuracy in electricity prices.

3.1 Benchmark models

Our first conventional benchmark is the meany,, model. In this model, the forecast
of the electricity price for day d and hour h is set to the weekly mean of hourly fre-
quency of the asinh-transformed price (Gnow.an) observed for each 983-day (732-day for

GEFCom2014) estimation window. Formally, the meany,q,, model is given as:

168
Yan = Uhowdn + €an = Y _ Bihow], + ean (4)

=1
where €4y, is the zero-mean iid distrurbance term and how?, is the hour-of-the-week

dummy defined as:

, 1, if 24(d — 1) + h is the j-th hour of the week,
how}, = (5)
0, oth.

where j stands for the hours of the week from 1 (Monday, h = 1) to 168 (Sunday, h = 24).

Our second benchmark model, denoted by naive, has been introduced to the EPF
literature by Nogales et al. (2002) and belongs to the class of similar-day approaches of
Weron (2014). Briefly, based on the similar-day principle, this model takes the previous
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week’s (the previous day’s) same hour as the forecast price for Saturday, Sunday and
Monday (for the rest of weekdays). As highlighted by many studies including Uniejewski
et al. (2016), Nogales et al. (2002), Conejo et al. (2005), the forecast performance of the
naive model can outperform some of the advanced models especially if they are poorly

calibrated. Formally, we can write the naive model as:

Yorp, if dowﬁhh =1forl=0,1,6,

Yvd—l hs oth.

)

where dowﬁl,h is the day-of-the-week dummy given as:

1, if d is the [-th day of the week,
dowﬁhh = (7)
0, oth.

where [ stands for the days of the week from 0 (Sunday) to 6 (Saturday).

The last benchmark model we employed is the popular simple AR model that models
the linear dependence of each price to the corresponding hour of previous days. Being in
line with Ziel and Weron (2018), we construct the AR model in the demeaned form by

using the weekly mean of hourly frequency for asinh-transformed prices Ypnow a,n as

Pn
Ydh = Yhow,d,h + Uno + Z Uni(Ya—ih — Yhow,d—in) + €dh (8)

i=1
where pj, is the required number of lags included in the model to ensure an iid structure
for the disturbance term €;5,. We denote this model by ARpew and select the appropriate
lag length according to the Akaike Information Criterion (AIC) with a maximum autore-
gressive order of 8. That is, for each estimation window, we select the lag length that
minimizes AIC = log( %) +2& where e is the vector of residuals obtained from ordinary
least squares (OLS) estimation of the model, k is the total number of parameters in the

model and n is the length of the estimation window.
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3.2 Autoregressive expert model

Expert models have been originally proposed by Misiorek et al. (2006) and have gained
momentum in the EPF literature, with several applications, including Weron (2006),
Weron and Misiorek (2008), Kristiansen (2012), Nowotarski et al. (2014), Ziel (2016),
Maciejowska et al. (2016), Uniejewski et al. (2016), Uniejewski and Weron (2018), and Ziel
and Weron (2018). These models manifest themselves as being abstract and parsimonious
and since they are built upon field knowledge of experts they are called as expert models.

In our analysis, we employ the expert ., ,, model of Ziel and Weron (2018)®:

Yah =B + Br2Ya—1.n + BnsYa—2,n + BraYa—1,n + BrsYi—1,min + Bh6Yd—1,maz
autoregre;give effects non—line‘z;r effects

6
7
+ BurYd-1,24 + E Bhridowg y,
—_——
last-hour effect =1 . (9)

~
weekday dummies

6 6
7 7
+ E Bh13+idowy pYa—1.n + E Bh,10+idowg jYa—1.24 +€an

i=1 =1

Vv
periodic effects

In this setting, Y4—14, Yi—2.4, and yq—7p stand for the autoregressive effects of the pre-
vious day’s same hour. Yg_1min = h:mln 4{yd_1,h} and Yg—1,maz = h:?,lé.%..},{ 4{yd_1,h} are
minimum and maximum of previous day’s hourly prices and, they are included to ac-
count for the previous day’s extreme price levels. Since the minimum and maximum are
nonlinear functions, these effects are called as the nonlinear effects. The lagged price,
Ya—1,24, which represents the price of the last hour of the previous day, accounts for
the potential dependence of early morning hours on the previous day’s midnight price.
Finally, the day-of-the-week dummies and periodic effects emphasize the short-term sea-
sonality components of the hourly electricity prices. In this setup, one should note that

for h = 24, there occurs a multicollinearity problem between y;_1924 and Y415, and,

between dow} ,ya—1,n and dow} 541,24 for i = 1,...,6 and we handle this problem by

3This version is the the most generic version of the Expert model employed in the main text of Ziel
and Weron (2018), please see Eq. (A.1) in their Appendix. Also see mAR1hm and AR2hm models of
Uniejewski et al. (2016)
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dropping the corresponding variables. Consequently, we estimate 25 parameters (18 for

h = 24) through the application of OLS. We call this model EXPERT.

3.3 Large scale models and shrinkage estimation procedures

As mentioned before the most challenging issue in an electricity price forecasting exercise
is the existence of many potential predictors. One way of selecting a set of the most
informative predictors is to rely on expert knowledge and past experiences, as in the
expert models. Selecting a subset of available predictors, however, may cause loss of
information and unstable and unreliable forecasts due to the changing performance of the
predictors over time (see e.g. Stock and Watson (2003)). Further forecast improvements
can be gained by taking advantage of more predictors that are available on the market
at the time of forecasting. In that sense, we utilize the following Large Scale pure-price

model inspired by the 24lasson  model of Ziel and Weron (2018):

oW,p,nl
8 24 8 8
Yd,h = E E Phij1Yd—ig + E hyi1,2Yd—imin T E Ph,i1,3Yd—imaz
=1 j5=1 i=1 i=1
. J A"
e . D
price autoregressive effects price non-linear effects

7 7
7 7
+ E i adowy , + E [on,i 1 5A0W g pYd—1,avg

i=1 i=1
N ~

(10)

J

Vv Vv
weekday dummies average price effects

6 6
i i
+ E i 1,6d0Wg pYd—1,n + E i1, 7dOWy Y124 +E€d -
i=1 =1

J/

NV
price periodic effects

In this equation, the first component represents the autoregressive effects of all hourly
prices for all days up to 8 days before the current day, the second and the third compo-
nents together account for the previous days’ extreme price levels, the fourth component
represents the day-of-the-week effect, the fifth component stands for the average price
effect (Ya,qavg is the average hourly day-ahead price at time d), last two terms describe the
periodic effects. The model contains six components and 234 explanatory variables for
h =1,...,23. For the last hour of the day, we drop the second term in “price periodic

effects”, since it creates a multicollinearity with the first term, thus we have 228 variables
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in total. For estimation of such a large scale model, we will utilize two different shrinkage
estimation methods. The first one is the popular LASSO approach and the second one
is the method of bagging, which has not been embodied in the EPF literature so far. In

the next two subsections, we discuss the details of these estimation procedures.

3.3.1 The LASSO approach

The LASSO is a shrinkage estimation procedure, which estimates the full model with
all predictors and then shrinks coefficients of less effective predictors towards zero by
utilizing a specific algorithm. It has been applied in various electricity price forecasting
exercises and showed superior forecasting performance compared to other conventional
non-shrinkage methods used in the EPF literature.

To describe the Lasso approach, let us re-write the large scale model given in Eq. 10

in matrix notation as:

YV = X006y, + uy (11)

where ), indicates an R-vector of observations for a given estimation window of R,

/
Yo = \yan - yd+R_1’h] , X, denote an R x k matrix that consists of columns of ex-

/

planatory variables, X, = {X; b , where X, 5, is a k-vector of transformed

Xrr-1n
explanatory variables at day d for a given hour h, B, is a k-vector of coeflicients with
typical element 5;, 1 = 1,2,...,k, and u;, denote R-vector with typical iid disturbance
€an, d =1,2,...,T — R. Given this representation, the lasso estimator given by Hastie

et al. (2015) has the form™:

B = argmin{ ||V, — B[ + All By} (12)

B
where V), and X, be the columnwise standardized analogs of Y, and X, respectively by
setting the variance equal to one and the mean equal to zero. A indicates the regularization
parameter. For A = 0, Eq. 12 turns into the objective function of the simple OLS

estimation and we obtain the OLS estimator of Bh, y- As X increases more coefficients

4)|.||2 is the usual Euclidean norm and ||3,]/; = Zle Bi
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shrink to zero and in the limiting case, where A\ — oo , all parameters are forced to be
Zero.

In application, selecting an appropriate value for A is crucial as the LASSO estimation
results are quite sensitive to the choice of the regularization parameter. We employ in-
sample information criterion (IC') selection procedure. In that sense, following Uniejewski
et al. (2019), we run the LASSO estimation for each value of \; = 10-"% fori=1,...,10
and select the optimum parameter A that yields the smallest Hannan-Quinn Information
Criterion (HQC), HQC = €'e + 2log(log(n))(k — l)%, where e is the vector of
residuals obtained from the LASSO estimation of the model in Eq. 10, k is the total
number of parameters in the model, [ refers to the number of parameters that are set to
be zero in the LASSO estimation and n is the length of the estimation window. In this
in-sample procedure, HQC is preferred due to its superior performance compared to the
AIC and Bayesian Information Criterion (BIC) (Ziel and Weron (2018)). Throughout
our discussion, the LASSO estimation with the regularization parameter being selected

according to HQC is denoted by LASSO_LSHQC,

3.3.2 The bagging approach

In an environment where there are many potential predictors with changing predictive
abilities over time, Bootstrap Aggregation, i.e. bagging procedure, can be considered as
a computationally simpler alternative to the popular LASSO approach. The key idea of
bagging is generating multiple information set through bootstrap resamples of the original
data, which helps to improve the forecast accuracy as the group of forecasts produced
by the resampled versions of the original data are expected to have similar biases but a
reduced variance as illustrated by Dantas and Cyrino Oliveira (2018).

The bagging procedure begins with forming pre-test (PT) forecasts. To compute
the PT forecasts, we first estimate the unrestricted model given in Eq. 11 for a given
estimation window R. Then, let ¢; denote the t-statistic for which null of 3; is equal to
zero in the model, where f3; is equal to ¢-th element of 3,, ¢ = 1,2,..., k, we perform

two-sided t-tests on each predictor of the model by specifying a critical value ¢.°. We

®Being in line with many studies on bagging, including Inoue and Kilian (2008) and Rapach and
Strauss (2010), we prefer to use t-statistics as the pre-test strategy. The t-statistics for the OLS estimates
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form a R x [ (1 <1 < k) pretested (PT) predictor matrix X7 by discarding the i-th

column of Xy, if|t;| < t. and estimate the following compact model by OLS®:
W = X/fTTIh + ¢, (13)

where 1, is an [-vector of coefficients with typical element 7;, 7 = 1,2,...,[, and ¢}, is an
l-vector with typical iid disturbances. Then, PT forecast of y411 that is based on the

most recent information available on day d is denoted by gj(ffl hld and it is calculated as:

N 0, if |tz| < tCVi7
Yat1,nld = . (14)
XTp e oth.

where 7);, is the OLS estimator of n,, in Eq. (13).
Once we derived the PT forecasts, we continue with constructing bootstrap aggregated

forecasts through following algorithm:

(i) Construct the R x (k + 1) matrix by combining ), and X}, as given below:

/
Yd,h Xin

/
Yarrn  Xgiin

/
Yi+rr-1h Xgyp_1n

(ii) Following the overlapping blocking scheme of Kunsch (1989), generate bootstrap

samples by drawing blocks of size m randomly with replacement from the above matrix

of Eq. (11) are computed using Newey and West (1987) heteroskedasticity and autocorrelation consistent
(HAC) standard errors.

6Tn the empirical analysis,unless otherwise stated, we consider as t. values, 2.58, 1.96, and 1.65 for
1%, 5% and, 10% significance levels, respectively.
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and paste them end-to-end to form the block bootstrap samples’:

*/

*
Ya,n d,h

* */
Yd+1,n Xd+1,h

* */
Yad+Rr—1,n Xd+R—1,h

(iii) For each bootstrap sample estimate Eq. (11), apply the pretesting procedure as
explained above and estimate the Eq. (13) and compute the forecast. Forecast of each
randomly generated sample is given in (15). That is, the forecast generated from each

bootstrap sample has the form:

0 if |t7] < t.Vi
~x PT ! t ’
Yd+1,nld = ) (15)
Ak
X;‘l}j{h f;, oth.
where ?);fipmw XflﬁT/, t¥, and, 7}, are bootstrap analogs of g5 Bl Xi}f/, t;, and, 7),,.
(iv) Form the bagging forecast, gjg‘jrl’ hjd> 88 the expectation of the bootstrap pre-tested

forecasts across bootstrap samples as:
~b * ~x PT
ydcjrl,hld =E"0 (16)

where [E* denotes the expectation operator with respect to the bootstrap probability
measure. In application, the expectation operator is replaced with its sample analog and

the bagging forecast is derived as:

B

~ba 1 ~

yg+1,h|d =B Z ydflT,h,b\d (17)
b=1

“In time series application, data dependency is an important phenomenon which effects the perfor-
mance of bagging. To address the possible data dependency problem block bootstrap is proposed instead
of regular bootstrap. Given that m is the block length, in time series forecasting applications m is set
equal to forecast horizon (Gongalves and Kilian (2004)). In our empirical analysis, we forecast for the
next day’s day-ahead price, that is why following Inoue and Kilian (2008) and Rapach and Strauss (2010)
we set m = 1 implying we are effectively considering regular bootstrap. For a textbook treatment of
time series applications of bootstrap we refer Davison and Hinkley (1997) and, Chapter 8 particularly
for dependent data applications.
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where g);_]:fh7b| 4 1s the pretested forecast computed using the b-th bootstrap sample and
B indicates the number of replications. In theory, B — oo would produce a perfect
approximation, however, in practice, we set B = 100 since it tends to give a reasonable
approximation, as underlined by Inoue and Kilian (2008) and Rapach and Strauss (2010).
Once gjgil’h‘ ; Is derived one can easily substitute into Eq. (3), and obtain the day-ahead
electricity price forecast on day d+ 1 and hour h conditional on the most recent informa-
tion available on day d, ?db-il,h\ 4- Throughout our discussion, we abbreviate the bagging
approach with the pre-testing strategy performed at 1, 5 and 10 percent significance levels
as BA_LS1, BA LS5, and BA_LS10, respectively.

3.4 Factor-Augmented models

As mentioned before, the major drawback of multivariate modeling is that it lacks intra-
day hourly dependencies. To circumvent that issue, one might think of using the uni-
variate approach. However, as discussed before, this procedure might suffer from serious
inaccuracy in terms of forecasting due to accumulated errors. Another alternative could
be constructing a VAR model. The use of a VAR model, however, will lead to a dramatic
increase in the total number of parameters needed to be estimated. That increase, which
is called as the “curse-of-dimensionality” by Raviv et al. (2015), dissipates the degrees
of freedom resulting in large estimation uncertainty and it might render the estimation
procedure infeasible especially for small samples. One way to overcome this “curse-of-
dimensionality” problem is employing factor models, which aim to reduce the dimension
by using a limited number of common factors to reflect the variability in the data. In
our study, to account for the intra-day dependencies but without being exposed to that
curse, we employ factor-augmented models. In essence, given that estimated factors intu-
itively represent the co-movements of hourly prices in different degrees, we augment the
ARjow, the EXPERT, the LASSO_LSHQC and the BA_LS1 with the factors com-
puted from thee panel of intra-day prices selected via in-sample Bayesian Information
Criterion through the PCA approach.

Factor models were previously employed in the EPF literature by Vehvilainen and

Pyykkonen (2005), Hardle and Triick (2010), Nowotarski et al. (2014), Raviv et al. (2015),
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Maciejowska and Weron (2015, 2016) and Ziel (2016). While these studies aim to forecast
electricity prices by using direct forecasts of factors, which are computed mainly from AR
and ARX type models, we prefer to augment our existing models with factors so that we
can continue to harvest as much information as possible from available predictors but at
the same time account for intra-day hourly dependencies of day-ahead electricity prices.
Moreover, in our analysis, we utilize an in-sample information criterion, namely BIC, to
specify the number of factors out of 24, whereas the current literature constructs models
with fixed, pre-determined number of factors.

Methodologically, we estimate the the latent factors for each estimation window using
the panel of raw (not transformed) price series. That is, for an estimation window of

length R, we first define the Y matrix as Y = [Y1 o Y24} where a typical col-
Rx24

/
umn Y, = Yy, ... Yaigoa, h] represents electricity prices of all days in the estimation

window at hour h. Then, the principal component decomposition of Y is given as:
Y=FA+e (18)

/
where, with its n-th column being F',, = [ Fin ... Fuy R_l,n} , F' covers the common la-
tent factors, A is the 24 x 24 factor loadings matrix, and € is the idiosyncratic variation of
prices at different hours, n = 1,...,24. By arranging the factors according to the descend-
ing order of their corresponding eigenvalues, we estimate the factors - common driver/s
of price changes - through the standard PCA approach. Let f, = [ fan -+ farr-1n]| >

be the asinh transformed version of the F',,, we respectively form the factor-augmented

versions of the ARypow, the EXPERT, and the large scale pure-price models as

Ph N
Yah = Yhowdh + Vo + Z Uni(Ya—ih = Yhow,d—ijh) + Z o fa-1,n + €dp (19)

i=1 n=1
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Yah =Bn1 + BraYa—1,n + BrsYa—2,n + Brala—r.n + BrsYi—1,min + Bh6Yd—1,maz

autoregressive effects non-linear effects

6
7
+ BhrYa-1.24 + E Bh7ridowg,
—— —
last-hour effect \Zil (20)

~
weekday dummies

6 6 N
i i
+ E 5h,13+id0wd,hyd71,h + E 6h,19+id0wd7hyd71,24+ E Oy fa—1,n +€apn

1=1 i=1 n=1
. S/ N

vV TV
periodic effects intra-day effects

24 8 24 8 8
Yd,n = E anfa—1n+ E E Mhyij1Yd—ig T E Hhil,2Yd—imin + g Hh,i1,3Yd—imaz
n—=1 i=1 i=1

i=1 j=1
A

~\~ v
intra-day effects  price autoregressive effects price non-linear effects

7 7
i i
+ E Pni1adowg 5, + E [oh,i 1 5A0Wg pYd—1,avg
=1 =1

(21)

J/

TV Vv
weekday dummies price average effects

6 6
i i
+ E Hh,i,l,Gdowdﬁyd—l,h + E #h,i,l,?dowdﬁyd—l,% +€q.h-

i=1 i=1

-
price periodic effects

where N represents the total number of factors included in the models and «,, is the
marginal effect of the n-th factor on the price. For the augmented ARpow (FARpow) and
the augmented expert model, EXPERT (fEXPERT), the number of factors is chosen
according to the in-sample BIC, while all twenty-four factors are included in the aug-
mented large scale pure-price model. In our analysis, if the estimation of the augmented
large scale pure-price model is carried out by the LASSO approach, we abbreviate it as
fLASSO_LSHQC, The estimation results obtained from the bagging approach with the
pre-testing strategy performed at 1, 5 and 10 percent significance levels are denoted as

fBA_LS1, fBA_LS5, and fBA_LS10, respectively.
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3.5 Forecast evaluation metrics

Forecast performance evaluation techniques are vast in econometric forecasting literature.
Particularly for the EPF literature, we refer reader to Hyndman and Koehler (2006);
Nowotarski et al. (2014); Nowotarski and Weron (2016). In our analyses, we compare
forecast performances of the models discussed in the previous sections in terms of three
widely used statistics in the EPF literature, Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and Mean of Weekly-weighted Mean Absolute Error (WMAE).
We checked for the sensitivity of the forecast performances of the models to alternative
evaluation metrics and observed that the results remained almost unchanged. Evaluation

techniques employed in this study are formulated as follows:

P 24

1
MAE:EZZ

i=1 j=1

&l (22)

P 24
1 .

i=1 j=1
P/ 7k 2 |4
NWNAR 1 Zi:7k76 i—1 Eij’
WMAE = Z( Tk o7 R
P/7 k=1 Zi:?kffi Zj:l Y;,j

where, P is the number of days in the out-of-sample period, and €; ; = Y] ;-1 — Y, ; with

) (24)

A

Y;

5,jli—1 and Y; ; is the predicted price and realized price for day 7 and hour j, respectively.

Note that the calculation of the WMAE requires the out-of-sample period to cover a
multiple of a week and therefore while computing the WMAE only full weeks are taken
into account. In the analyses, our out-of-sample period covers 1470 days for five major
markets (350 days for GEFCom2014) and that corresponds to 210 weeks (50 weeks) in
total. Regarding the performances of the forecast evaluation metrics we employ, the
MAE and the WMAE are more robust to outliers compared to the RMSE, while the
WMAE has the further advantage to eliminate the adverse effects of close to zero and
negative electricity prices due to the normalization (Uniejewski et al. (2019); Marcjasz

et al. (2020)). We also evaluate hourly forecast performances of all considered models in

terms of the hourly MAE (MAE}) and the hourly RMSE (RMSE,).
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While the RMSE, MAE, and WMAE provide informative signals on the comparative
performance of the forecasts of the models, they fail to suggest statistically significant con-
clusions. Therefore, we further evaluate the forecasts by using the forecast encompassing
test of Diebold and Mariano (1995) (abbreviated DM). If, say, there are two competing
models, Model A and Model B, the DM test simply tests whether or not forecasts of one
model statistically outperform the other one. To do that, given the covariance-stationary

loss differential series for the hypothetical models A and B:

AaBdn = éA,d,h‘ - éB,d,h‘ (25)

where, €x 4 is the prediction error of model X, X = A, B at time d for a given hour
h. one needs to compute the p-values of two one-sided tests for each dataset: having
the nulls of Hy : E(A4 pan) < 0 implies that Model-A encompasses B, whereas null of
Hy : E(Aspan) > 0 implies Model-B encompasses A for hour h. Rejection of both nulls
at the same time means failure of models to outperform each other for hour A.

We also consider the “multivariate” DM test which allows us to derive a single statistic

for each forecasting model instead of 24. The multivariate loss differential series has the

form:
24 24
Aupa= |eaail =Y |énail- (26)
i=1 i=1

Like its standard version, we test two null hypotheses Hy : E(Aspq) < 0 and H, :
E(A4pq4) > 0 to decide on whether or not one model outperforms the other one consid-

ering all 24 h of the day.

4 Empirical results

In this section, we present the results of our empirical forecasting exercise for day-ahead
electricity prices of five major power markets and GEFCom2014. In the first subsec-
tion, we first compare forecast performances of all models according to MAE, RMSE,
and WMAE and then continue with the DM tests to provide statistical inferences for
the assessment of the performances. In the final subsection, we provide the occurrence

tables that present the selected variables by the models providing promising forecast
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performances.

4.1 Forecast results

Conducting our out-of-sample study over the out-of-sample period of 1470-day for five
major markets and 350-day for GEFCom2014, we present the forecast performances of
the meanpeyw, naive, ARnow, EXPERT, LASSO_LSHQC BA_LS1, BA_LS5, and
BA _LS10 models in the first eight columns of Table 2. While Panel A of Table 2 gives
the values of MAE, Panel B and C provide the values of RMSE and WMAE, respectively.
Table 2 clearly indicates that shrinkage estimation methods (i.e. bagging and LASSO)
outperform the benchmark models (i.e. meanyey, naive, ARpow) and the EXPERT
model, irrespective of whether MAE, RMSE, or WMARE is used. This finding is not
surprising and it is in line with the existing literature (Nowotarski and Weron (2016);
Ziel and Weron (2018); Uniejewski et al. (2018, 2019)). Though it provides lower forecast
accuracy compared to the large scale shrinkage estimated models, it is noteworthy to
mention that, in sharp contrast to other benchmark models, the EXPERT model shows
a remarkable forecast performance and it appears to be a promising model in terms of
all evaluation metrics.

Regarding the comparison between the approaches of bagging and LASSO, we ob-
serve that, in terms of the MAE, the bagging approach outperforms the LASSO for
five datasets: NP.SYS, PJM.COMED, OTE.CZ, OMIE.SP and GEFCom2014, while the
LASSO appears to be the best model for only one data set: NP.N2EX. As discussed in
the above sections, we apply the bagging approach by performing the pre-testing strategy
at different significance levels. From Panel A of Table 2, we get the result that setting a
low significance level in the pre-testing strategy (i.e. keeping the predictor in the model
only if it is highly significant) leads to an increase in the performance of the bagging
approach. That is, according to the MAE results, while BA_LS1 provides better per-
formance than the LASSO_LSHQC for five datasets (NP.SYS, PJM.COMED, OTE.CZ,
OMIE.SP, and GEFCom2014), BA_LS5 and BA_LS10 outperform the LASSO_LSHQ€
for four (PJM.COMED, OTE.CZ, OMIE.SP, and GEFCom2014) and three datasets
(PJM.COMED, OMIE.SP, and GEFCom2014), respectively. Concerning the RMSE and
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Table 2: Forecasting results for bagging and other conventional day-ahead price fore-

casting models

Panel (A): Mean Absolute Errors (MAE)

Original Versions

Factor-augmented Versions

&) O

z TR
: . : B 0" oz B 2 : 2 4 7
= = 2 = | — — = Sa) | —
Market g = o] o o | | — e o ©) <

3 = = »; H < << < = > N
= &) Q - M ) = &= 2 =

< <

a =
NP.SYS 8.306 2991 2625 2122 2104 2.042 2.130 2.228 2375 2.156 2.166 2.054
NP.N2EX 10.154 5951 5.055 4.768 4.618 4.620 4.668 4.779 4.917 4.745 4.634 4.653
PJM.COMED 7.811 5.113 4.077 3.594 3.461 3.325 3.313 3.349 4.183 3.462 3.367 3.388
OTE.CZ 9918 7466 7.329 5.366 5.306 5.246 5262 5413 6.671 5.304 5.354 5.344
OMIE.SP 10.136 5.615 5.103 3.860 3.974 3.798 3.799 3.879 4.381 3.829 3.990 3.826
GEFCom2014 15.065 9.463 8.194 7.348 7.257 7.047 7.068 7.197 8.153 7.357 7.333 7.091

Panel (B): Root Mean Squared Error (RMSE)

NP.SYS 11.210 5667 4713 4.187 4215 4232 5014 5807 4358 4521 4808 4.255
NP.N2EX 18.780 18.560 13.902 13.809 13.573 13.576 13.595 13.682 13.819 14.454 13.778 13.663
PJIM.COMED 14.105 10.743 8432 8192 8020 7351 7074 7.017 25425 8475 7.219 7451
OTE.CZ 13.785 11287 10.447 8070 8004 7.941 7.937 8144 9.635 8005 8077 8.026
OMIE.SP 12,901 8305 7.41 5399 5447 5333 5.307 5398 6162 5362 5467 5358
GEFCom2014 31.220 18.082 16.117 15.387 15.336 13.813 13.493 13.511 17385 15.507 15.082 14.076

Panel (C): Mean of Weekly-weighted Mean Absolute Error (WMAE)
NP.SYS 40495 15924 13.834 11.032 10847 10.664 11.106 11.612 12319 11058 11.085 10.742
NP.N2EX 36.188 21570 18.205 17.208 16.699 16.723 16.809 17.308 17.789 17.102 16.753 16.847
PJM.COMED 42348 26.860 21.230 18502 17.630 17221 17.210 17.472 19.824 17596 17.468 17.446
OTE.CZ 43707 35611 34.410 25.146 24798 24.696 24784 25461 31.236 24.813 24.968 25.143
OMIE.SP 38.675 21231 19.439 14.669 14.966 14.336 14.361 14.622 16595 14.533 15.002 14.427
GEFCom2014 37.320 26.026 22.275 19.473 19.302 19.341 19.598 20.094 21471 19531 19.616 19.125

Note: The table reports the model forecasting results calculated for full
period as defined by Eq. (22), (23), and (24), respectively. Best performing model result
1s indicated with boldface in each dataset.
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WMAE values, given in Panel B and Panel C of Table 2, we observe similar pictures.
More specifically, while the LASSO approach outperforms the bagging technique only for
NP.SYS and NP.N2EX (NP.N2EX and GEFCom2014) in terms of the RMSE (WMAE),
the bagging (BA_LS1 and BA_LS5) provides higher forecast accuracy for the majority
of the markets.

To provide further insight into the comparison of forecast accuracies of the LASSO
and bagging approaches, we plot the MAE values from BA_LS1 and LASSO_LSHQC
for each 24 h of the day in Figure 1. Overall, we see that forecast errors from the bagging
and LASSO approaches follow a similar pattern over the day, though bagging appears
to provide higher forecast accuracy during the working hours (05:00-18:00) in almost
all markets but especially in NP.SYS, PJM.COMED, and OMIE.SP. For these markets,
later in the text, using hourly DM test results we statistically prove that BA_LS1 clearly
encompasses the LASSO_LSHQC for 10 to 16 hours of the day. The main reason be-
hind the observed superior forecast performance of the bagging approach during working
hours could be the structural differences in the selected explanatory variables by the
bagging and LASSO approaches, which will be discussed in detail in the next subsec-
tion. To assess whether or not factor-augmentation, which aims to account for intra-day
hourly dependencies of day-ahead electricity prices, provides any further improvement
in the forecast accuracy we report the forecast results of the factor-augmented mod-
els, fARhow, TEXPERT, fLASSO_LSHQC and fBA_LS1 in the last four columns of
Table 2°. The results indicate that, overall, the factor augmentation provides an im-
provement in the forecast performances of the ARpow and EXPERT models, though
that improvement is slightly less substantial when the RMSE is used as the evaluation
metric. While factor augmentation seems to increase the forecast accuracy of the ARpow
and EXPERT models, the same cannot be deduced for shrinkage methods. Regarding
the LASSO approach, we observe that factor-augmentation leads to an improvement in
the forecast performance for only one or two markets (PJM.COMED, GEFCom2014),

depending on the loss metric used. In the case of the bagging approach, on the other

8In terms of the bagging approach, we report only the forecast results from the augmented-bagging
technique with the pre-testing strategy performed at 1 percent significance level due to space limitations
and also the outperformance of theBA_LS1 over BA_LS5 and BA_LS10. However, the forecast results
off BA_LS5 andfBA_LS10 are available from the authors upon request.
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Figure 1: Hourly Mean Absolute Error for LASSO_LS!® and BA_LS1 models as
defined in Section 3.5 for full out-of-sample period. Results are given for each dataset in

separate panels.
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hand, fBA _LS1 appears to be inferior to its original version for all markets in terms of all
evaluation metrics. Given that the motivation behind the inclusion of the factors in the
models is to capture intra-day dependencies of electricity prices, our finding that factor
augmentation results in inferior forecasts for shrinkage methods might imply that large
scale shrinkage methods already include intra-day dependencies in their original versions
even if they are formed in a multivariate context. Therefore, one might not need to deal
with the complexity of the implementation of a univariate framework to derive forecasts
from a large scale model. However, for the multivariate ARpow and EXPERT models,
the factor-augmentation approach could be a computationally simple alternative to the
univariate modeling framework.

So far, our out-of-sample forecasting exercise has revealed the superior forecasting
performance of the shrinkage estimation procedures in comparison to other constructed
models. Moreover, comparing two shrinkage estimation approaches, bagging and LASSO,
the bagging technique seems to outperform the LASSO for the majority of the markets,
in both daily and hourly time scales. All these conclusions, however, are deduced from
evaluation metrics, which can provide signals on the comparative performance of the
forecasts of the models but cannot suggest a statistical inference. To be able to provide
statistical inferences regarding comparative forecast performances we continue with the
DM tests, as explained in Section 3.5. In that sense, we first apply the multivariate DM
test, which compares forecasts on a daily basis, and then we perform the standard DM
test to derive a better understanding of how the forecast performances change across the
hours”.

Figure 2 shows the multivariate DM test results for each dataset. We utilize a heat
map to represent the range of the p-values for the null hypothesis that the model on the
X-axis encompasses the model on the Y-axis. In the map, as a p-value gets closer to
zero (0.10), the difference between the forecasts of the model on the X-axis and the fore-
casts of the model on the Y-axis becomes more (less) substantial and the corresponding
cell turns red (green). That is, for example, for a specific market if the first row of the

map is completely green, while the first column is completely red (excluding the diagonal

9Since we observe similar patterns for different loss metrics all DM test results (both multivariate
and standard versions) are based on Mean Absolute Error.
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Figure 2: Multivariate DM test results for each dataset as defined by the loss differential
series given in Eq. (26). p-values are given for the null hypothesis of Hy : E(Axyq) <0
which implies that the model on the X-axis encompasses the model on the Y-axis. A

heat-map

is used to indicate the range of p-values with the corresponding colorbars.
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Figure 3: Hourly DM test results for each dataset as defined by the loss differential series
given in Eq. (25). Each cell indicates total number of hours out of 24 for which model
on the X-axis encompasses model on the Y-axis at 5% significance level. A heat-map is
used to indicate the range of hours with the corresponding colorbars.
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part), then we observe the inference that the forecasts of the meanye,, model are sig-
nificantly outperformed by those of all other models for that specific market. A careful
inspection of Figure 2 reveals important inferences, almost all of which are consistent
with the conclusions drawn from Table 2. Firstly, it appears that the multivariate DM
tests statistically confirm that shrinkage estimation methods outperform the benchmark
models (i.e. meanyey, naive, AR,y ) for all markets. Moreover, our finding that factor-
augmentation improves the forecast accuracy of the ARpow and EXPERT models for
all markets is supported by the DM tests as well. Regarding the forecasting performances
of the bagging and LASSO approaches, it appears that the BA_LS1, seems to beat the
LASSO_LSHQ€ for the markets NP.SYS, OTE.CZ, OMIE.SP and GEFCom 2014. For
the NP.N2EX market, forecasts from the original LASSO, i.e. LASSO_LSHQC and
from its factor-augmented version, i.e. fLASSO_LSHQC are not significantly worse
than those of BA_LS1. This finding reveals the statistical insignificance of our previ-
ously observed inference that the LASSO provides lower forecast errors than the bagging
technique for the market NP.N2EX in terms of all evaluation metrics. For PJM.COMED,
on the other hand, while LASSO_LSHQ€ fails to beat theBA_LS1, the forecasts from
the fLASSO_LSHQC are not significantly worse than those of BA_LS1. Concerning
the effect of factor-augmentation on the bagging and LASSO, we observe that augmen-
tation does not provide a significant forecasting outperformance for all markets except
PJM.COMED. Overall, being in line with the results of Table 2, the bagging approach
appears to provide significantly higher forecast accuracy for the majority of the markets
according to the multivariate DM tests.

To delve deeper into the statistical forecast comparison between bagging and LASSO
approaches and to evaluate the forecast performances of the models across hours, we
present the standard DM test results conducted for each hour of the day in Figure 3.
Each cell in the heat map indicates the total number of hours for which the model on the
X-axis encompasses the model on the Y-axis at the 5 percent significance level. If the
forecasts of a model on the X-axis outperforms the forecasts of a model on the Y-axis for
all 24h, the corresponding cell turns black and if the forecasts of a model on the X-axis

are not significantly more accurate than those of a model on the Y-axis for any hour,

the corresponding cell turns red. For NP.SYS, PJM.COMED, and OMIE.SP our results
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show that BA_LS1 clearly encompasses the LASSO_LSHQ€ for 10 to 16 hours of the
day (while the reverse is not true). The hours of the day for which BA _LS1 beats the
LASSO_LSHQ€ approximately correspond to working hours where total energy demand
is high and this finding is consistent with the inference drawn previously from Figure
1. For OTE.CZ, it seems from Figure 3 that for the hours approximately from 03:00 to
09:00, BA_LS1 beats the LASSO_LSHQC  while the two approaches show statistically
similar forecast performances for the markets NP.N2EX and GEFCom2014 for almost all

hours of the day.

4.2 Occurrence of variables

In this section, we aim to analyze the structures of the models that provide the most
promising forecasts, i.e. BA_LS1, LASSO_LSHQ€ and fEXPERT. In theory, bagging
and LASSO are both shrinkage estimation methods (Stock and Watson (2012)) and
therefore they are expected to produce asymptotically similar forecasting performances.
In finite samples, however, they can produce substantially different forecast performances,
as illustrated in our forecasting exercise where the bagging approach attains superior
forecasting performance compared to the LASSO in most of the markets, while their
performances are not statistically different for the rest few markets. The underlying
force for the differentiation in the forecasting performances of the bagging and LASSO
approaches can be attributed to the selected parameters during the estimation procedure.
In an attempt to better characterize the structural differences between BA _LS1 and
LASSO_LSHQC, we construct Tables 3 to 7 to present the mean occurrences of the
explanatory variables in both models. In each table, while the left panel gives the results
for the LASSO, the right panel presents the results for the bagging approach. To generate
occurrence tables we first count the number of times a specific explanatory variable is
selected by the LASSO approach in each out-of-sample point, convert them in percentage
points, and then average over all 6 datasets. Similarly, for bagging results are formed by
counting the total number of variables selected by the t-test at the 1 percent significance
level in each out-of-sample point and averaging those numbers over all datasets. We

utilize heat maps to ease the interpretation of the tables so that more (less) commonly
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selected explanatory variables are shown by greenish (reddish) cells.

While our results for the occurrence matrix of the LASSO are mostly in parallel with
the findings of Ziel and Weron (2018) and other studies in the EPF literature, some
substantial differences emerge between the variables selected by the bagging and LASSO
approaches. The first striking difference comes from the widely known previous day’s
same hour effect that can be traced from the diagonal elements of the day: d-1 matrix in
Table 3. While the previous day’s same hour price appears to be a quite relevant variable
in the LASSO, it is less apparent in the bagging approach except for hours between 17:00
and 21:00. Another difference between LASSO and bagging approaches comes from the
previous day’s last hour effect, i.e. last row of the day: d-1 matrix in Table 3. This effect
shows high relevance in the LASSO for almost all hours even if its appearance follows a
slightly decreasing pattern towards the evening hours. In the the bagging, on the other
hand, it carries relevant information mainly for the night and early morning hours from
01:00 to 07:00, whereas it appears to be relatively less important during the working hours.
The form of the appearance of the previous day’s last hour price in the bagging approach
seems to be consistent with the expectation that the high relevance of the previous
day’s last hour price for the early hours of the day should follow a decreasing pattern as
some other factors in the price determination process kicks in during the day. Moreover,
recall that when we compared the hourly forecasting performances of the bagging and
LASSO approaches in Figure 1, we deduced that their forecasting performances mainly
differ during the working hours with bagging providing higher forecast accuracy than
the LASSO. In this regard, one reason for the superior forecasting performance of the
bagging might be the observed way of the integration of the previous day’s last hour
effect in the bagging approach. Regarding the other previous days’ same hour effects, we
see from Tables 4, 5, and 6 that as the time difference increases the autoregressive effect
becomes less relevant both for bagging and LASSO, though it is still more important for
the LASSO.

Another remarkable difference between the bagging and LASSO is the appearances
of the day-of-the-week dummies, the non-linear minimum and maximum effects, and the
periodic effects, presented in Table 7. As seen in the third row of the Table, in the LASSO

approach, Monday, Sunday, and Saturday dummies pop up for almost all hours, whereas
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in the bagging approach these dummies commonly appear only during the hours from
06:00 to 20:00, and Monday dummy is less apparent. Regarding the non-linear minimum
and maximum effects, presented in the first two rows of Table 7, it seems that while the
previous two days’ minimum and maximum prices are more important for the LASSO
approach, especially in the first six hours of the day, only the previous day’s minimum
price appears to be relevant for the bagging approach during the night and morning
hours from 01:00 to 08:00. Similarly, the relevance of the periodic effects in the bagging
approach is less apparent compared to the case observed in the LASSO approach, as seen
in the last two rows of Table 7.

The observed differences in the mean occurrence tables give us grounds to believe that
the differentiation in the forecast performances of the LASSO and bagging approaches
mainly arise from their structural differences in the explanatory variables selection pro-
cess. Overall, the mean occurrence tables indicate that some specific explanatory vari-
ables show higher appearances in the LASSO approach. One reason behind this finding
could be the fact that the LASSO technique deals with the large scale models by shrink-
ing some coefficients and setting some others to exactly zero, which in turn might lead
higher number of appearances of some specific variables. The bagging approach, however,
follows a completely different estimation strategy by dropping the insignificant variables
in one pseudo-sample and giving them another chance for being selected in some other
artificially generated sample.

Finally, turning to the selected factors in the fEXPERT model, we form Table 8
by choosing the optimum number of factors for each out-of-sample point according to
BIC, counting the total number of selected factors, and finally averaging them over all
datasets. According to Table 8, the first three factors show the highest relevance for
almost all hours of the day, while the fourth and the fifth factors appear to be effective
especially for the night and early morning hours from 03:00 to 06:00. This result implies
that the forecast improvement of the fEXPERT model over its original version comes
mainly from the inclusion of the first three factors and some additional higher degree
factors for the relevant hours. Furthermore, our finding, highlighting the importance of
the first three factors, is in line with that of Raviv et al. (2015) who observe that intra-

day hourly dependencies of day-ahead electricity prices can be represented well through
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a small number of factors without being exposed to the high dimensionality issue'’.

10We also analyzed the mean occurences of factors for the fARyow model and obtain an approximately
similar pattern to that of the fEXPERT model. The corresponding table is not reported here due to
space considerations but it is available upon request.
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5 Conclusion

There is an enormous literature concerning forecasting day-ahead electricity prices and
it is growing pari passu with the availability of more sophisticated forecasting proce-
dures. However, the most challenging issue of the literature, which is the integration of
many potential predictors with changing predictive abilities over time into the models,
still requires further attention. In that sense, in this study, we have introduced a new
shrinkage method to the EPF literature, namely bagging, and applied this procedure
in a multivariate framework to forecast day-ahead electricity prices for six major power
markets in comparison with a number of stochastic models that are commonly applied
in the literature.

Overall, our findings suggest that bagging is a very competitive and promising tool
for the estimation of large scale models and for improving forecast accuracy of day-
ahead electricity prices with its superior forecasting performance and its computationally
simple algorithm. More specifically, we observe that the bagging approach significantly
outperforms all benchmark models for all markets, while it outperforms the popular
LASSO approach for four markets, in both daily and hourly scales. For the rest two
markets, where bagging fails to beat the LASSO in terms of forecast accuracy, we observe
that forecasts from bagging are not significantly worse than those of LASSO. We further
deduce that the forecast performances of the bagging and LASSO differentiate from
each other across hours of the day as well so that bagging appears to provide higher
forecast accuracy during the working hours in almost all markets. When analyzing the
selected explanatory variables or the occurrence of the variables in both approaches,
we deduce that differentiation in the forecast performances of the LASSO and bagging
approaches mainly arise from their structural differences in the explanatory variables
selection process.

Although we perform our forecasting study in a multivariate framework, we are aware
of the limitation that the multivariate setting lacks intra-day hourly dependencies of day-
ahead electricity prices. To account for these dependencies, we further augment all our
models with latent factors observed from a standard PCA approach. In that respect, our

results suggest that the inclusion of the latent factors provides a substantial improve-
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ment in the forecasts from models covering a specific subset of explanatory variables,
while almost no improvement is obtained in the forecasts from the LASSO and bagging
approaches. This finding implies that large scale models already contain, to some extent,
the intra-day dependencies of electricity prices even if they are formed in a multivariate
context, and therefore, there is no need to deal with the complexity of the implementation

of a univariate framework.
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